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Similarity laws of mean velocity profiles and turbulence characteristics of Couette–
Poiseuille turbulent flow (C-P flow) have been studied experimentally. The global
parameters of C-P flow are the Reynolds number Re∗ and the dimensionless shear
stress gradient µ and flow parameter β . The effects of these parameters on the
turbulence structure have also been considered in the wall region and turbulent core
region, respectively. In the wall region, the wall law varies greatly with µ but slightly
with Re∗. Typically, the additive constant B of the logarithmic law (or Van Driest
damping factor A+) is shown to depend only on µ. Turbulence characteristics are also
strongly influenced by µ, but not much by Re∗. Because the relation µ = −Re∗ holds
in plane Poiseuille flow and Re∗ has little effect on the similarity laws for C-P flows,
the low-Reynolds-number effect on the additive constant and turbulence quantities
for plane Poiseuille flow can be attributed to the µ effect. In the turbulent core
region, however, there is a great difference in the defect law of the velocity profile and
the distribution of turbulence intensity between Poiseuille (P)- and Couette (C)-types
flows. For P-type flow, an effective friction velocity u∗

e and a new coordinate η = y −hs

are recommended for the universal profile, where y = hs = δp is the position of τ =0
and δp is considered to be appropriate as a characteristic length scale of turbulence.
For C-type flow, a different effective friction velocity u∗

c, the characteristic length scale
2h and the wall coordinate y are preferred. The turbulence activity away from the
wall is extremely high for µ > 0 and low for µ < 0. A strong sweep event plays a
dominant role in the Reynolds shear stress when 0 <µ< 50, whereas strong ejection
from the near-wall region prevails in the case of negative µ with a small absolute
value.

1. Introduction
Turbulent Couette–Poiseuille (C-P) flow has a number of applications in engineering

practice. The most obvious is in predicting the motion within turbulent bearing films.
The usual approximation of lubrication theory represents bearing films by splicing
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together a series of fully developed C-P flows. Two particular C-P flows, i.e. pure
pressure or plane Poiseuille flow and pure shearing or plane Couette flow, have been
studied so far. However, except for El Telbany & Reynolds (1980, 1981), combined
C-P flow has not been investigated.

Many studies have been conducted on the similarity laws for turbulent boundary
layers with a pressure gradient, for example Kays (1971), Kader & Yaglom (1978),
Blackwelder & Kovasznay (1972) and Nagano, Tagawa & Tsuji (1991). In particular,
Kader & Yaglom (1978) carefully examined and compared the results for many
developing boundary layers exposed to adverse pressure gradients in order to note
points of disagreement, and deduced similarity laws that described many such flows
with good accuracy. They adopted the streamwise gradient of kinematic pressure,
dp/dx/ρ, as the parameter characterizing the departure of a boundary layer from the
constant stress pattern in the constant stress layer. Since the local shear stress plays
an important role in the turbulence intensities and dynamic aspects of the turbulence,
El Telbany & Reynolds (1980) adopted the wall-normal shear stress gradient ∂τ/∂y

as the relevant dynamic parameter. They concluded that ∂τ/∂y should be adopted in
developing a unified view of the wall layer, applicable to both channel and boundary
layer flows. In the boundary layer flow, however, ∂τ/∂y is not constant, but varies
in the wall-normal direction. On the other hand, for fully developed channel flow,
∂τ/∂y is constant in the whole flow region. Consequently, C-P flow is the best flow
in which to investigate the effect of the shear stress gradient on the similarity law
of the velocity profile and the turbulence intensity. This is the main reason why we
investigate C-P flow here.

In a study of the similarity laws of velocity profiles and turbulence characteristics
in C-P flow, the work by El Telbany & Reynolds may be considered a typical
experimental investigation, although Thurlow & Klewicki (2000) reported an
investigation on the so-called ‘geometry effect’ recently. Kuroda, Kasagi & Hirata
(1994), on the other hand, studied the effect of mean shear rate on the wall turbulence
by numerical simulation. But no systematic studies on the velocity profiles and
turbulence statistics on C-P flows have been published so far except for that by El
Telbany & Reynolds. However the inlet length influenced their measurements, so the
present investigation has been conducted for the fully developed condition.

The main objective of this work is to clarify the effect of shear stress gradient
on the velocity profiles and characteristics of wall turbulence. The global parameters
of C-P flows are the Reynolds number Re∗ = u∗

sh/ν, the dimensionless shear stress
gradient µ = u∗3

s /(αν) and the flow type β = αh/u∗2
s . Here ν is the viscosity and, u∗

s ,
h, α =d(τ/ρ)/dy and y stand for the friction velocity based on the shear stress at
the stationary wall, the channel half-height, the kinematic shear stress gradient and
the distance from the stationary wall. The values of these parameters can be changed
independently by selecting various combinations of bulk flow velocity (flow rate) and
moving-wall speed in the C-P flow. Thus we can investigate the effect of each of these
parameters on the similarity laws of turbulence statistics separately. However, plane
Poiseuille flow, a particular case of C-P flow, has a relation of Re∗ = −µ. Accordingly,
we cannot set different values of Re∗ and µ in plane Poiseuille flow.

In the present paper, we first give an overview of C-P flows in § 2. Since the flows
under consideration are classified into Poiseuille and Couette types, we shall discuss
the difference between the two types. Also, we discuss dividing the flow into regions
for consideration of the velocity defect law in the turbulent core region. In § 3, the
experimental apparatus and method are described. Wall friction is considered in § 4.
In § 5, similarity laws of mean velocity profiles are discussed within the basic scheme
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Figure 1. Schematics of mean velocity profiles and shear stress distributions: (a) P-type flow,
(b) C-type flow.

considered in § 2. Similarity laws of turbulence intensities, correlation coefficient,
skewness factor and four-quadrant analysis of Reynolds shear stress are discussed in
§ 6.

2. Poiseuille and Couette flow types
The C-P flow can be divided into the Poiseuille-type (P-type) and Couette-type

(C-type), as shown in figure 1, by whether there is a region of zero shear stress in the
flow between two walls. The upper wall is stationary and the lower wall is moving.
The subscripts s and m denote the stationary and moving walls, respectively. In P-type
flow, a position at which τ = 0, i.e. y = δp = u∗2

s /|α| close to the position of maximum
velocity, exists in the flow field, so the value of α must be negative. For C-type flow,
however, the value of α becomes positive, zero or negative, depending on the speed of
the moving wall on which the maximum velocity exists. Moreover, a location where
τ = 0 does not exist in the flow field.

For P-type flow, the mean vorticity changes sign at the position of zero shear in
the flow field of the channel as seen from the velocity profile, shown in figure 1(a).
Accordingly we can assume mean negative and positive vorticities, respectively, in
the upper and lower flow regions divided by the line τ =0, where the production
of turbulent kinetic energy is zero. For C-type flow, on the other hand, the mean
vorticity does not change sign throughout the flow field, so that we can assume a
circulation, as shown in figure 1(b).

As the flow in the wall region is governed by the adjacent wall effect, similar
treatment is possible in the near-wall region for both C- and P-type flows. In the
turbulent core regions, however, there is an evident difference in the turbulence
characteristic between the two flows, because the production of turbulent kinetic
energy is not zero in the former, but is in the latter. Thus, we can conjecture that the
similarity laws for the velocity profile and turbulence intensity differ greatly between
P-and C-type flows. Therefore, different scaling for the velocity and length is needed
in the turbulent core region for the P- and C-type flows.

For the law of the velocity profile and the turbulence structure, we divide the flow
region into two parts, i.e. regions near the stationary and moving walls, at y = hs ,
which divides the flow region for the P- and C-type flows. Here, hs is the distance
from the stationary wall to the dividing line. For P-type flow, hs can be assumed to
be δp . Since the distribution of shear stress is linear, the relations hs + hm = 2h and
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u∗2
s /u∗2

m =hs/hm hold. Here u∗
s,u

∗
m and hm are the friction velocities at the stationary

and moving walls and the distance between the dividing line and the moving wall,
respectively. So we can obtain

hs = u∗2
s h/u∗2

e = u∗2
s hm/u∗2

m , (1)

where u∗
e = {(u∗2

s + u∗2
m )/2}1/2 is the effective velocity which differs by 1/

√
2 from that

defined by El Telbany & Reynolds (1980).
For C-type flow, however, there is no position where τ = 0. Hence, different way

to determine hs is needed. Here, we assume that the flow region can be divided at
the inflection point of the velocity profile, as shown in figure 1(b). Now we apply the
following defect law in the flow region of the stationary wall:

[U (hs) − U (y)]/u∗
s = D((hs − y)/hs)

n. (2)

In the moving-wall region, we can assume that (2) will hold after applying the Galilean
transformation, as shown in figure 2. A new coordinate, ξ = 2h − y, that is fixed on
the moving wall, and U ′ = Ub − U are used where Ub is the speed of the moving wall.
Then U (hs) − U = U ′ − U ′(hm), hs − y = ξ − hm are obtained. If D = n= 1 is assumed,
the following relationship can be obtained:

[{U ′(hs) − U ′(y)}/(hs − y)]/[{U ′(hm) − U ′(ξ )}/(hm − ξ )] = (hm/hs)(u
∗
s /u

∗
m),

and therefore hm/hs = u∗
m/u∗

s

Hence, hs is given by

hs = 2hu∗
s /(u

∗
s + u∗

m) = hu∗
s /{(u∗

s + u∗
m)/2} = hu∗

s /u
∗
c, (3)

where u∗
c = (u∗

s + u∗
m)/2.

In the turbulent core region, the flow-type parameter β is important. P- or C-
type flow can be obtained for β < −0.5 or > −0.5, respectively. In particular, plane
Poiseuille and Couette flows can be obtained for β = −1 and 0, respectively.

3. Experimental apparatus and method
Figure 3 shows a schematic view of the test channel, which is 5.4 m in length and

0.85 m in width. The upper wall is stationary and the lower wall, which consists of a
flat belt, can be moved either with the air flow through the channel or in the opposite
direction. The stationary-wall is made of acrylic plastic plate, while the moving wall
is a polyester conveyer belt driven by a variable-speed motor. The channel depth
2h is 20, 40 or 80 mm depending on the experimental conditions being studied. The
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coordinates x, y and z are the streamwise distance from the channel inlet section,
the wall-normal distance from the stationary-wall and the spanwise distance from
the central plane of the channel, respectively. At the upstream end of the channel, a
blower with a settling chamber and two-dimensional diffuser is attached to push air
into the channel. By selecting various combinations of air flow rate and moving belt
speed, we can obtain different kinds of C-P flow. Two motors to drive the blower and
the belt were controlled by inverter units.

The belt speed Ub was measured optically by counting the number of tape strips
passing through the sensor in a unit of time. The strips are glued on the edge of the belt
at every 110 mm in the moving direction and reflect the emitted light from the sensor.
The uncertainty in this measured speed is less than 1%. There were pressure holes
on the stationary wall, every 200 mm in the x-direction, and the static pressure was
measured at these points by a precision pressure cell (having 0.01 mmAq resolution).

The measurements of velocity were made at the central plane of the channel
(z = 0) at the station xm =3 m from the inlet of the channel, where the flow was
fully developed, as was confirmed by Nakabayashi et al. (1988). We measured mean
velocity profiles and streamwise and wall-normal fluctuating velocity components
(u and v) at the stationary-wall side by hot-wire anemometers with I- and X-type
probes, respectively. The reliability of measurements was checked by comparison of
Reynolds shear stress between the data measured directly by X-wire and the results
estimated from the momentum balance equation given below using the mean velocity
profiles.

Table 1 shows the symbols used in the following figures. The values of parameters
in the table are based on the wall-stress scaling of the stationary-wall (y = 0) side
for both P- and C-type flows. The Reynolds number Re∗ of the present work covers
fairly wide range, from very low to moderately high, but not the high-Re∗ condition.
These data sets are best suited for comparison with current DNS.

Figure 4 shows examples of normalized Reynolds shear stress distributions for
various µ and β . Symbols show direct measurement data from the X-wire probe. Solid
lines indicate the normalized Reynolds shear stress estimated from the momentum
balance equation

−uv+ = 1 + y+/µ − dU+/dy+. (4)
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Poiseuille-type Couette-type

µ Re∗ Re∗′ β µ Re∗ Re∗′ β

� −60 100 60 −1.66 � −1334 105 109 −0.08
� −127 96 127 −0.76 � −464 112 130 −0.24

−137 164 137 −1.20 � −413 175 252 −0.42
� −195 277 195 −1.42 � 35 156 75 4.48
� −216 455 216 −2.11 � 55 177 95 3.23
� −264 370 264 −1.40 �� 85 103 73 1.22
� −275 653 275 −2.37 94 145 96 1.54
�� −376 568 376 −1.51 � 222 278 194 1.25
� −383 421 383 −1.10 	 258 99 85 0.38

 −531 679 531 −1.28 � 451 160 139 0.35

� 780 316 270 0.41
902 100 95 0.11

1333 159 151 0.12

Table 1. Parameters and symbols.
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Figure 4. Reynolds shear stress distributions. For symbols, see table 1. ×, plane Poiseuille
flow (Re∗ = 182).

They agree very well. The chain line indicates the dividing line between C- and P-type
flows. As |µ| decreases, the curve shifts upward or downward for positive or negative
µ, respectively.

The result shows that the present data are reliable within an uncertainty of less
than 1% for the mean velocity and about 4% for the Reynolds stress, except for the
wall vicinity. The friction velocity u∗

s was estimated from the mean velocity profiles
near the wall, based on the principle proposed by Bahtia, Durst & Jovanovic (1982)
and the procedure used by Nagano et al. (1991).
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4. Wall-friction coefficient
Figure 5 shows the relationship between the viscous friction coefficient Cf non-

dimensionalized by the belt speed Ub[Cf = τw/(ρU 2
b /2)] and β = αh/u∗2

s . Experimental
results of El Telbany & Reynolds (1980) and DNS results of Kuroda et al. (1994)
are also shown. Solid symbols in the figure are for α > 0 and open ones for α < 0.
For α < 0, Cf becomes infinite at β = −1 (plane Poiseuille flow), because Ub = 0 in the
pure pressure flow. When β approaches infinity, Cf becomes zero, because the wall
skin friction becomes zero. For α > 0, when β approaches zero (α → 0: pure shearing
flow, i.e. plane Couette flow), Cf approaches a maximum value which depends on
Re∗. With increasing β , Cf decreases. Data scatter a little, because of the difference
in Re∗. At the same value of β , Cf tends to slightly increase as Re∗ decreases. In the
figure, broken, solid, dot and chain lines indicate fitting curves of each data set for
Re∗ ≈ 100–150, 300–400, 400–500, 800, respectively. The results described above agree
with those obtained by El Telbany & Reynolds (1980) and Kuroda et al. (1994). The
present experimental results for Cf for plane Couette flow, shown by triangles outside
the left-hand verical axis, agree well with the following experimental formula given
by Robertson (1959):

Cf = 2(0.095/ log(Reb/4))2. (5)

Next we consider the relationship between the wall-friction coefficient C ′
f scaled

by the mean velocity U (hs) at the dividing line (y = hs), i.e. C ′
f = τw/(ρU (hs)

2/2)),

and Re∗′ = u∗
shs/ν. Here, (C ′

f /2)1/2 gives the ratio of the inner velocity scale u∗
s to the

velocity U (hs). Re∗′ is the ratio of the distance from the dividing line to the stationary
wall hs to the viscous length scale δv = ν/u∗

s . Figure 6 shows a graph of C ′
f against
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Figure 6. Wall-friction coefficient C ′
f . For C-P flow: �, α < 0; �, α > 0, present results: �,

α < 0; �, α > 0, El Telbany & Reynolds (1980): �, α < 0 Kuroda & Kasagi (1993). For plane
Couette flow: 
, Nakabayashi et al. (1994): �, Andersson et al. (1993): 
, Lee & Kim (1991).
For plane Poiseuille flow: �, Hussain & Reynolds (1975): �, Johansson & Alfredsson (1982):
×, Kreplin & Eckelmann (1979): +, Kim et al. (1987):��, Nishino & Kasagi (1990): �, Antonia
et al. (1992), �, Reichardt (1959). Solid line: Robertson (1959). Dot-dash line, Dean (1978).
Broken line, Hussain & Reynolds (1975).

Re∗′ for the present results and the results of El Telbany & Reynolds for C-P flows,
including those obtained by Kuroda et al. and other researchers for plane Poiseuille
and Couette flows. In laminar flow, C ′

f is the same for both plane Poiseuille and
Couette flows, as given by

C ′
f =2/Re∗′. (6)

In turbulent flow, C ′
f for plane Couette flow is given by the Robertson formula,

equation (5), shown by a solid line. For plane Poiseuille flow, on the other hand, the
Hussain & Reynolds (1975) formula, which is shown by a broken line, is given by

u∗
s /Uc = 0.1079(Rec/2) − 0.089, (7)

where U (hs) = Uc and Rec = 2hUc/ν. Dean’s (1978) formula, indicated by a chain line,
is given by

Cfmean = 0.073Re−1/4
mean , (8)

where Cfmean = 2u∗2
s /U 2

mean and Remean = 2hUmean/ν. Umean is the bulk velocity averaged
on the cross-section. The results of El Telbany & Reynolds show a large dispersion,
and the result of Reichardt is too high. Except for the results of El Telbany &
Reynolds and Reichardt, all other data including the present ones are nearly in
agreement with the formulae given by equations (5), (7) and (8).
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5. Law of velocity distribution
5.1. Law of the wall

In the wall region, dimensional considerations allow us to write the velocity profile
as the law of the wall as follows:

U+ = F1(y
+, µ, Re∗′). (9)

Here, U+ = U/u∗
s , y+ = y/δv = yu∗

s /ν, µ = δp/δv = u∗3
s /(|α|ν) and Re∗′ = u∗

shs/ν,
where δp = u∗2

s /|α| is the shear stress gradient length scale. When Re∗′ and µ are
quite large, equation (9) reduces to

U+ = F1(y
+). (10)

In the viscous sublayer, this reduces to

U+ = y+. (11)

In the local equilibrium layer, where turbulent energy production equals energy
dissipation, we can obtain the following log-law:

U+ = 1/κ ln y+ + B, (12)

where κ is the Kármán constant. The constants κ and B are generally dependent on
Re∗′ and µ unless these parameters are quite large.

Figure 7 shows mean velocity distributions measured by the I-probe in a semi-log
plot. The figure compares the DNS result for plane Poiseuille flow (Horiuchi 1993)
and the experimental results of boundary layer flows with favourable (Blackwelder &
Kovaszany 1972) and adverse pressure gradients (Nagano et al. 1991). Note that the
definitions of µ and Reynolds number Re∗ for the boundary layer flow are different
from those for the C-P flows. For the boundary layer, α is the kinematic pressure
gradient dp/dx/ρ that is equal to the shear stress gradient (dτ/dy/ρ)wall at the wall and
the Reynolds number is defined by Re∗′ = u∗

s θ/ν, where θ is the momentum thickness.
In the neighbourhood of the wall, all data collapse onto a single curve. But in the
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Figure 8. Additive constant B of the log law against |µ|. �, α < 0; �, α > 0, present results.
For plane Couette flow (µ= ∞): �, Re∗ = 620, El Telbany & Reynolds (1980): 
, Re∗ =260,
Nakabayashi et al. (1994): �, Re∗ = 85, Andersson et al. (1993): 
, Re∗ = 170, Lee & Kim
(1991). �, Re∗ = 143, Reichardt (1959). Broken line, pipe flow, Patel & Head (1969).

region y+ > 10, U+ follows different curves depending on the values of Re∗′ and µ. For
high values of Re∗′ and µ, the velocity distribution coincides with the conventional
log-law (broken line); κ is considered to be a universal constant independent of Re∗′

and |µ|. The existence of the log-law region at low Re∗, symbol � in figure 8 for
example, is not established but except for very low Re∗ as here, most of the present
data have a log-law region, Nakabayashi et al. (1988) and Nakabayashi, Kitoh &
Nishimura (1997). As the absolute value of µ decreases, the velocity distribution shifts
upward or downward in parallel for negative or positive value of µ respectively. The
boundary layer flows with adverse and favourable pressure gradients show the same
trend as the C-P flows with positive and negative µ, respectively.

Figure 8 shows the relation between B and the absolute value of µ. In the range
|µ| > 400, B takes a constant value of 5.5, although its values for plane Couette flow
(µ = ∞) shown by the symbols outside of the axis on the right in the figure have a
large dispersion. With a decrease in absolute µ, however, B increases for negative
µ and decreases for positive µ. For pipe flow, Patel & Head (1969) attributed this
increase of B to the ‘low Reynolds number effect’. But this attribution is not correct
for other C-P flows except for plane Poiseuille flow. When the data are replotted
against Re∗′, they cannot be arranged like figure 8 and show no systematic trend. We
can say that B depends only approximately on µ. Accordingly, we may conclude that
the ‘low Reynolds number effect’ may be attributed to the µ effect.

Figure 9 shows the relation between the Van-Driest damping coefficient A+ and
|µ|. The Van-Driest model can be written

U+ =

y+∫

0

2
/[

1 + [1 + 4(κy+)2{1 − exp(−y+/A+)}2]1/2
]
dy+. (13)
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Figure 9. Van-Driest damping factor A+. �, α < 0; �, α > 0, Present results. �, Boundary
layer flow, Nagano et al. (1991). +, Plane Poiseuille flow, Antonia, et al. (1992). For plane
Couette flow (µ= ∞): �, El Telbany & Reynolds (1980): 
, Nakabayashi et al. (1994): 
,
Lee & Kim (1991). Solid line, plane Poiseuille flow, Huffman & Bradshaw (1972). Broken line,
boundary layer flow, Kays (1971).

Lines indicate the results obtained by Huffman & Bradshaw (1972) for plane
Poiseuille flows (µ < 0) and those obtained by Kays (1971) for boundary layer flows
with adverse pressure gradient (µ > 0). The results of Antonia et al. (1992) for a plane
Poiseuille flow and those of Nagano et al. (1991) for an adverse pressure gradient
boundary layer are also shown. The present data agree well with these results. A+

depends only on µ. When µ increases to infinity, A+ approaches 26. As the absolute
value of µ decreases, A+ decreases for positive µ, but increases for negative µ.
Thus both B and A+ are affected very strongly by µ. Hence we show the relation
between A+ and B in figure 10. When µ → ± ∞, A+ → 26 and B → 5.5. For µ > 0,
B decreases with decreasing µ. But for µ < 0, B increases with A+ with decreasing
|µ|. A non-dimensional wall distance of y+ = A+ indicates a position related to the
thickness of buffer layer. As shown later in figures 14 and 15, for µ > 0, turbulent
activity (turbulence intensity or turbulent kinetic energy production) becomes large
at smaller y+ with decreasing µ. Consequently, the buffer layer becomes thinner, as
seen in figure 7, so that the value of A+ becomes small and B decreases. For µ < 0,
on the other hand, an increase of A+ means weaker turbulent activity with decreasing
|µ|, because the fully turbulent region moves far from the wall.

5.2. Half-power law

In a region somewhat further from the wall, it is possible that the shear stress gradient
α is dominant, while the wall shear stress τw and distant wall h have little influence.
Using α and u∗

s as independent dimensions, equation (9) can be written

U+ = f4{y/δp, δv/δp, hs/δp}. (14)

If we can assume the mixing length theory holds and a linear shear stress distribution,
the following half-power law can be obtained:

U+ = K1

(
αy/u∗2

s

)1/2
+ K2 (15)
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Figure 11. Coefficient of 1/2-power law K1. �, present results. �, El Telbany & Reynolds
(1980); �, Samuel & Joubert (1974). Broken line, Kader & Yaglom (1978).

K1 and K2 are constant. The half-power law holds just above the log-law region only
for a flow with positive shear stress gradient (α > 0). Figure 11 shows the relation
between K1 and flow parameter β ′ = αhs/u

∗
s . The results by El Telbany & Reynolds

(1980) for C-P flows, as well as the results of Samuel & Joubert (1974) and Kader &
Yaglom (1978) for boundary layer flows are also shown. Solid circles indicate the
present results and show a Reynolds number dependence that has not previously
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P-type C-type

Characteristic velocity u∗
e u∗

c

Characteristic length δp (stationary wall side) h

hs

2hu∗2
s

u∗2
s + u∗2

m

2hu∗
s

u∗
s + u∗

m

Table 2. Characteristic velocity and length scales and distance from the stationary wall to
the line of division of the flow hs: u∗

e = (u∗2
s + u∗2

m /2)1/2, u∗
c = (u∗

s + u∗
m)/2, δp = u∗2

s /|α| =

2hu∗2
s /(u∗2

s + u∗2
m ).

been pointed out. Solid curves indicate the results for which Re∗′ has approximately
constant values. These curves indicate a tendency for the values of K1 to decrease
with increasing β ′, parallel to the result obtained by Kader & Yaglom. As the results
of Samuel & Joubert are for high Reynolds number at Re∗′ = 2000–3000, the curve
given in Kader & Yaglom may show the limit for Re∗′ → ∞. As the reason why the
present results have smaller values than the results for the boundary layer, we can
conjecture that the shear stress gradient is not constant in the boundary layer and
that Reynolds numbers Re∗′ of data are smaller for C-P flows than for the boundary
layer flows.

5.3. Defect law

In the turbulent core region, the following defect laws are well known for plane
Poiseuille and Couette flows, respectively:

[U (y = h) − U ]/u∗
s = (1/2)Rs(1 − y/h)2 for plane Poiseuille flow.

[U (y = h) − U ]/u∗
s = Rs(1 − y/h) for plane Couette flow.

Here, U (y =h) gives the maximum velocity for plane Poiseuille flow and the velocity
at an inflection point of the profile for plane Couette flow, as seen in figures 1(a)
and 1(b), respectively. The value of Rs = u∗

shs/εT , which incorporates the constant
eddy viscosity εT , generally varies with Reynolds number Re∗′. For plane Couette
flow, in particular, it varies from 3 to 5.8 with an increase of u∗

s /Ub from 30 to 47
(Nakabayashi et al. 1997).

For the case of C-P flows, distributions of mean velocity and shear stress vary largely
according to the difference in turbulence characteristics between P- and C-type flows,
as described later. Therefore it is necessary to change the characteristic velocity and
length scales appropriately for P- and C-type flows. Based on the considerations in § 2
and the present experimental data, we propose the following formula for the defect
law as a function of the distance y from the point of zero shear stress or the inflection
point for P- or C-type flow using the respective characteristic velocity or length scale:

[U (hs) − U (y)]/[characteristic velocity] = D[(hs − y)/(characteristic length)]n. (16)

Here, the characteristic velocity and length scales and hs are given in table 2,
where u∗

e = [(u∗2
s + u∗2

m )/2]1/2, u∗
c =(u∗

s + u∗
m)/2 and δp = u∗2

s /|α| =(2hu∗2
s )/(u∗2

s + u∗2
m ).

The channel half-height h instead of hs is designated the length scale for C-type
flow, unlike the discussion developed in § 2, because this fits better with experimental
results. Note that the present definitions of velocity and length scales differ from those
of El Telbany & Reynolds, and that the effective friction velocity u∗

e is also defined
differently.
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Figure 12. Constants of the velocity defect law. (a) Exponent n, (b) coefficient D. �, α < 0,
P-type flow; 
, α < 0, C-type flow; �, α > 0, C-type flow; present results. ×, El Telbany &
Reynolds (1980).

Figure 12 shows exponent n and coefficient D in equation (16) against β , where
β < −0.5 and β > −0.5 belong to P-and C-type flow, respectively; β = −1 is plane
Poiseuille flow; β = 0 indicates plane Couette flow. The present results for n are
approximately the same as those of El Telbany & Reynolds who obtained n= 1.9 for
P-type flow and n= 1.0 for C-type flow. The present value of n varies from about 2.0
to 1.0 in the transition region (β = −1.1–0.3), where the flow varies from P-type to
C-type. The present study gives a different result for the coefficient D from that of
El Telbany & Reynolds, because their formula for the defect law differs from ours.
When we apply equation (16) as the defect law to their data, their result agrees very
well with the present result, as shown in figure 12(b). However, both data sets disperse
widely in the transition region of β where the type of flow changes from P-type to
C-type. Except for the transition region, however, both data decrease with increasing
|β|.

The eddy viscosity εT is given by

εT =

[
u∗2

s {1 + y/δp sgn (α)} − ν dU/dy
]
/(dU/dy). (17)

The dimensionless eddy viscosity εT /(u∗
sh), which is the inverse of the turbulent

Reynolds number, gives 2/Rs for plane Poiseuille flow and 1/Rs for plane Couette
flow, respectively. For C- P flows, however, velocity and length scales have to change,
as described above (table 2). In the turbulent core region εT takes its maximum
(nearly constant) value and the dimensionless eddy viscosity is plotted in figure 13. In
the transition region, it changes linearly with β but tends to have a rather constant
value outside the transition region.

6. Turbulence characteristics
No definite discussion has been given so far on the similarity laws of the turbulence

intensities. First, we summarize the relations obtained by dimensional analysis before
considering them on the basis of the present experimental results. In the stationary-
wall region, the following equation can be written:

u′/u∗
s = u′+ = f1(y

+, µ, Re∗′), (18)
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Figure 13. Relation between maximum values of kinematic eddy viscosities and β . For
symbols, see table 1.

where u′ =(u2)
1/2

. As described later, Re∗′ is less effective than µ, so u′+ can also be
written as

u′+ = f2(y
+, µ). (19)

As the wall is approached, this equation can be expanded in a Taylor series.

u′+ =A1(µ)y+ + A2(µ)y+2 + · · · . (20)

Very close to the wall, the higher-order terms are omitted and the following linear
relation results:

u′+ = A1(µ)y+. (21)

When the values of both y+ and µ are large, the ‘plateau’ region appears:

u′+ = B (22)

A turbulent core region exists in the central part of the channel, where different
velocity scales and coordinates should be taken depending on whether C- or P-type
flow occurs, as described before. For P-type flow, a new coordinate η defined by
η(= y − hs) and an effective friction velocity u∗

e(=[(u∗2
s + u∗2

m )/2]1/2) are preferred. For
C-type flow, the velocity scale is scaled by u∗

c(= (u∗
s + u∗

m)/2), as described before.
Consequently, the following relations can be obtained:

u′/u∗
e = f3(η/h, β), (23)

for P-type flow;

u′/u∗
c = f4(η/h, β), (24)

for C-type flow.

6.1. Turbulence intensities in the wall region

Figure 14 shows the variation of u′+ according to the wall-stress scaling of equation
(18). Profiles for similar µ values but different Re∗′ value do not differ so much.
The influence of Re∗ is small, so equation (19) is adequate. For y+ < 6, equation (21)
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Figure 14. Turbulence intensity of u scaled by inner scaling. For symbols, see table 1. Solid
line, plane Couette flow, Nakabayashi et al. (1997).

can be confirmed. When the values of both µ and y+ are large, say µ = 1333 and
y+ = 80–100, the ‘plateau’ region described later appears, where equation (22) holds.
As |µ| decreases, the profile of u′+ shifts upwards for µ > 0 or downwards for µ < 0
from the limiting value of u′+ for µ = ± ∞, respectively. This tendency comes from
the variation in turbulent kinetic energy production(

−uv(dU/dy)
(
ν/u∗4

s

)
= −uv+(dU+/dy+)

)
with µ, as shown in figure 15. Here for µ > 0, the dimensionless Reynolds shear
stress (−uv+) increases with µ−1, while dU+/dy+ does not change much with µ.
This assures a large production rate of turbulent kinetic energy for small positive
µ. For µ < 0, however, the location of τ = 0, at which no production of the kinetic
energy occurs, approaches the wall with increasing |µ|−1. Hence, as |µ| decreases,
the turbulence intensity profile shifts downwards, as seen in figure 14. Since the
relation Re∗′(=Re∗) = −µ holds in plane Poiseuille flow, it is natural to assume that
the variation in turbulence intensities, the so-called ‘low Reynolds number effect’ for
plane Poiseuille flow, is caused by the effect of the low µ value, as described in § 5.1.

Figure 16 shows coefficient A1 of equation (21) against |µ|. The value of A1(µ)
increases for µ > 0 or decreases for µ < 0 with decreasing |µ|. The present results
agree with the data of El Telbany & Reynolds and the cases of both plane Poiseuille
and boundary layer flows. Accordingly, it is assumed that the asymptotic behaviours
of near-wall turbulence are the same for both boundary layer and channel flows and
depend only on µ.

Figure 17 shows the peak values of u′+(u′+
peak) and their location (y+

u′peak) against

|µ|. The µ dependence of the peak value changes with the sign of µ, when |µ|
becomes smaller than about 200. For negative µ, the peak value agrees with that of
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Figure 15. Production term of turbulence kinematic energy. For symbols, see table 1. Solid
line, plane Couette flow, Nakabayashi et al. (1997), dashed line, plane Poiseuille flow, Re∗ = 180,
Horiuti (1993).
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Figure 16. Coefficient A1. �, µ< 0; �, µ> 0, present results. 
, µ< 0; �, µ> 0, El Tebany &
Reynolds (1981). For boundary layer flow: �, µ> 0, Nagano et al. (1993). For plane Poiseuille
flow: +, Antonia, et al. (1992): �, Kim et al. (1987).

plane Poiseuille flow. For positive µ, the peak value that differs slightly from that of
boundary layer flow increases with decreasing µ. The relation between |µ| and the
peak position has a similar tendency to that between |µ| and the peak value. As |µ|
becomes smaller than about 200, the peak position increases with decreasing |µ| and
becomes larger than that of the boundary layer flow with adverse pressure gradient.
This suggests that the turbulence behaviour begins to differ, in the region beyond
y+ ≈ 15, between turbulent channel and boundary layer flows for the smaller µ case,
although the asymptotic behaviour of near-wall turbulence is similar in both flows.

The plateau region described above can be seen in the region y+ = 80–100 for
µ = 1333 in figure 18. The results obtained by El Telbany & Reynolds (1981) in
C-P flow and by Nakabayashi et al. (1997) in plane Couette flow are also shown.
Following El Telbany & Reynolds, the plateau region exists for y+ > 80 in the case
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Figure 18. Plateau region of u+. For symbols, see table 1. Solid line, plane Couette flow,
Nakabayashi et al. (1997); broken line, El Telbany & Reynolds (1981).

of |µ| > 200. In fully developed plane Poiseuille flow, however, Kitoh & Nakabayashi
(1993) reported that the plateau region appeared for y+ > 80 when Re∗ > 1500. Since
Re∗ = Re∗′ = −µ holds in plane Poiseuille flow and the influence of Reynolds number
on the turbulence intensity is small in the wall region, the plateau region can be
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Figure 19. Turbulence intensity of v scaled by inner scaling. For symbols, see table 1. Solid
line, plane Couette flow, Nakabayashi et al. (1997).

conjectured to appear for the condition |µ| > 1500. The cases of µ = 1333 and −1334
are the largest values of µ in the present experiment. The distribution of u′+ at
µ = 1333 is close to that for plane Couette flow, and the plateau region exists just
below the core region estimated from the mean velocity profile. Hence we can
assume the existence of a plateau region for µ = 1333. In the profile at µ = −1334,
however, one cannot be sure that the plateau region exists, because the profile of
u′+ at µ = −1334 is too low compared with that for the plane Couette flow, and the
dependence on y+ appears on the profile.

Figure 19 shows the turbulence intensity of the wall-normal component in the wall
region for P-type flow, plotted according to the wall-stress scaling. Here we consider
only reliable data, i.e. data obtained at y+ > 40. As the absolute value of µ decreases,
the profile shifts upwards from that of µ = ∞ for positive µ, but downwards for
negative µ. This tendency is similar to the streamwise component u′+.

6.2. Turbulence intensities in the turbulent core-region

Figure 20(a) shows distributions of turbulence intensity u′ in the turbulent core region
scaled by u∗

e according to equation (23) for P- type flow. The results obtained by El
Telbany & Reynolds (1981) are higher and more widely scattered than the present
results, which are distributed along a curve for plane Poiseuille flow. The profile
generally shifts upwards with decreasing β , so the value of u′/u∗

e at η =0 increases
with decreasing β . In the plane Poiseuille flow, that is a special case of C-P flow,
the position of the minimum value of u′/u∗

e located at the centre of the channel
agrees with the positions of both zero Reynolds shear stress and maximum velocity.
However, they generally do not coincide with each other in C-P flow. Now, let y1, y2

and y3 be the positions of the maximum velocity where viscous shear stress is zero,
the position of zero Reynolds shear stress and the position of the minimum value of
u′/u∗

e , respectively. We shall define the difference in their positions from the position
of zero total shear stress y = δp as 
yi = yi − δp(i = 1, 2 and 3). Figure 20(b) shows
the relation between 
yi/h and β . The position of maximum velocity shifts to the
high-shear-stress wall side as β decreases for β < −1 (i.e. 
y1 > 0). But the position
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Figure 20. Turbulence intensity of u in the core region for P-type flow. (a) Turbulence
intensity of core region. For symbols, see table 1. Solid line, plane Poiseuille flow, Horiuti
(1993). (1.0–1.8) shows the range of data obtained by El Telbany & Reynolds (1981). (b)
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Figure 21. Turbulence intensity of u in the core region for C-type flow. For symbols, see
table 1.

of zero Reynolds shear stress does not vary (i.e. 
y2 ≈ 0). On the other hand, the
position of the minimum value of u′/u∗

e tends to shift to the low-shear-stress wall
side (i.e. 
y3 < 0). Here, the high- or low-shear-stress side means the wall side having
higher or lower absolute wall shear stress than the other, respectively.

In the turbulent core region for C-type flow, the distribution of turbulence intensity
u′ scaled by u∗

c is shown according to equation (24) in figure 21. The profile, which
shifts upwards with increasing β , has a tendency to increase with η/h for β > 0, but
has a minimum value around η = 0 for β < 0.

Figure 22 shows relative turbulence intensity of the wall-normal component v′ in
the turbulent core region for P-type flow. The present results are distributed around
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Figure 22. Turbulence intensity of v in the core region for P-type flow. For symbols, see
table 1. Solid line, plane Poiseuille flow, Horiuti (1993). (0.7–1.0) shows the range of data
obtained by El Telbany & Reynolds (1981).

the DNS result obtained by Horiuti (1993) for plane Poiseuille flow and show a slight
increase with decreasing β . For reasons to be discussed in the following subsection
with regard to the shear correlation coefficient, El Telbany & Reynolds’ results are
higher than the present results. The wider dispersion of their data comes from the
wider range of β(−7.2 <β < −1.0) than the present experiment.

6.3. Shear correlation coefficient

Figure 23 shows variation in the shear correlation coefficient with y/h for P-type flow.
Although the peak in the near-wall region given by DNS result cannot be seen in
the present experimental results, the measurements gave reasonable results except for
the near-wall region. With increasing β , the zero shear correlation coefficient moves
away from the wall, because it is given by the relation y = δp = |β|h.

Figure 24 shows the shear correlation coefficient for C-type flow. Note that this
flow has no zero-correlation point in the flow region. Except for the near-wall region,
i.e. y/h> 0.4, the correlation coefficient has a value of about 0.45 at its maximum,
which is typical of turbulent uniform shear flow, as reported by Tavoularis & Karnik
(1989). El Telbany & Reynolds (1981) reported a much larger value of 0.7–0.75 for
C-type flow as shown by the chain line in figure 24(a). The section measured in their
experiment was (45–20) × (2h) from the inlet section. Compared to the (150–37) × (2h)
in our experiment, this was too short to obtain turbulent statistics for fully developed
flows. Figure 24(b) shows the correlation coefficients at y/h= 1 and 0.6 against β . The
correlation coefficient decreases and approaches an asymptotic value as β increases.
However, the data are a little scattered by the change in Re∗ around β ≈ 0.

6.4. Skewness factor

Figure 25 shows distribution of the skewness factor for the u-component S(u) against
y+ for various µ and Re∗′. The solid and dotted lines indicate the experimental results
for plane Couette flow (µ = ∞, Re∗′ = 253, Nakabayashi et al. 1997) and DNS for
plane Poiseuille flow (Re∗′ =180, Horiuti 1993), respectively. In the wall region, results
for S(u) with nearly the same µ but different Re∗′ (e.g. those for row 8 on the left and
row 3 on the right in table 1, as shown in the figure) are almost the same, indicating
that Re∗′ does not have the appreciable effect on the S(u) profile that µ does. Thus
Re∗′-independence is similar to the turbulence intensity profiles described in § 6.2. In
general, S(u) increases (when µ > 0) or decreases (when µ < 0) from the value of
µ = ∞ (plane Couette flow) as |µ| decreases. For µ > 0, the upward deviation of each
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Figure 23. Shear correlation coefficient of P-type flow. For symbols, see table 1. Solid line,
plane Poiseuille flow, Horiuti (1993).
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Figure 24. Shear correlation coefficient of C-type flow. (a) Distribution. Solid line, plane
Couette flow, Nakabayashi et al. (1997). (0.7–0.75), shows the range of data obtained by El
Telbany & Reynolds (1981). (b) Shear correlation coefficient at constant y/h against β . � and
broken line, y/h = 0.6; � and solid line, y/h =1.0. Dotted line and (0.45) indicate data on
turbulent uniform shear flow by Tavoularis & Karnik (1989).
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Horiuti (1993). Solid line, plane Couette flow, Nakabayashi et al. (1997).

profile from that of µ = ∞ is more significant as the wall is approached. This can
be explained as follows. As shown in figure 14, the turbulent motion becomes more
and more active in the region away from the wall as µ( > 0) decreases and the high
velocity there penetrates inside the near-wall region so as to cause a strong sweep
event. This is the reason for the noticeable increase in S(u) near the wall for µ > 0. In
particular, as µ decreases below 94, negative S(u) disappears from the channel section
because the intensified sweep contributes more to the Reynolds shear stress than the
ejection, as shown in the next section. For µ < 0, however, S(u) shifts downward from
µ = ∞ in the region away from the wall for the following reasons. In the case of µ < 0,
the turbulence intensity and/or the turbulent kinetic energy production in the outer
wall region become more and more weak compared with that in the buffer region as
|µ| decreases. The ejection of low-speed fluid into the outer wall region overwhelms
the sweep, as described in the next section. In the region of y+ less than about 10,
however, negative µ has no effect on S(u) at all, so the ejection and the sweep events
are presumably unaltered.

6.5. Four-quadrant analysis of fluctuating velocities

Frequencies and fractional contributions to the Reynolds shear stress from each
velocity quadrant are studied by a four-quadrant analysis. Figure 26 gives a typical
example of P-type flow (µ = −195, Re∗ = 277). Here, (−uv)i is the contribution to
the Reynolds shear stress from the i-quadrant. In figure 26(a), the correspondence
between the types of events (ejection, sweep and interaction) and each quadrant
is shown. Variations in the fractional contribution and frequency against y/h for
P-type flow are similar to those of plane Poiseuille flow, i.e. the contribution from
the ejection with small frequency is larger than that from the sweep on either of the
walls. Figure 27 shows an example of the fractional contribution of C-type flow with
large positive shear stress gradient (µ = 35, Re∗ = 156). Unlike P-type flow, the sweep
contributes more to the Reynolds shear stress than ejection.

The effect of shear stress gradient on the fractional contribution is different between
P- and C-type flows. To determine the effect, the relative fractional contribution
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Figure 26. Example of four-quadrant analysis for P-type flow (Re∗ = 277, µ= −195).
(a) Fractional contribution, (b) frequency. �, total (uv), �, quadrant 1 (sweep event on
moving-wall side); �, quadrant 2 (ejection event on stationary-wall side); �, quadrant 3
(ejection event on moving-wall side); �, quadrant 4 (sweep event on stationary-wall side).
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Figure 27. Example of fractional contribution by four-quadrant analysis for C-type flow
(Re∗ = 156, µ= 35). �, Total (uv), �, quadrant 1 (sweep event on moving-wall side); �, quadrant
2 (ejection event on stationary-wall side and sweep event on moving-wall side); �, quadrant 3
(ejection event on the moving-wall side); �, quadrant 4 (sweep event on stationary-wall side
and ejection event on moving-wall side).

defined as (−uv)4/(−uv) is plotted against y+ for various µ in figure 28 for C-type
flow. The relative fractional contribution from quadrant-4 increases near the wall
(y+ < 100–200) as positive µ decreases. Thus, the contribution from a sweep becomes
stronger as µ decreases and, finally when µ decreases below around 50, the sweep
prevails over the ejection. This is a peculiar feature of C-type turbulence with a large
positive shear stress gradient.
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Figure 28. Relative fractional contribution from quadrant 4 for C-type flow. For symbols,
see table 1.

7. Conclusions
Similarity laws for mean velocity profiles and turbulence characteristics of C-P

turbulent flow have been studied. The global parameters of C-P flow are Reynolds
number Re∗ = u∗

sh/ν and the dimensionless shear stress gradient µ = u∗3
s /(αν) or flow

parameter β = αh/u∗2
s , where α = d(τ/ρ)/dy. Re∗ and |µ| values covered in this work

are 96 � Re∗ � 679 and 35 � |µ| � 1334, respectively. The flow field is divided into
two regions, say upper and lower regions, at y = hs , i.e. at τ = 0 for P-type flow or at
an inflection point of the velocity profile for C-type flow. Various length and velocity
scales appear in C-P flow. Depending on the flow type and flow region considered,
the appropriate length and velocity scales are adopted for similarity laws. The main
conclusions obtained are as follows.

(i) The wall friction coefficient scaled by belt speed, Cf = τw/(ρU 2
b /2), is given

as a function of both Reynolds number Re∗ and flow parameter β . But the wall
friction coefficient scaled by the mean velocity at the dividing line of the flow (y = hs),
C ′

f = τw/(ρU (hs)
2/2), is given only by the parameter Re∗′ = u∗

shs/ν.
(ii) The law of the wall is modified by the shear stress gradient parameter µ but not

by Re∗′. The additive constant B of the log-law, however, increases or decreases with
the decrease in the absolute value of µ for the negative or positive value, respectively,
depending on its sign. Such µ dependence of the wall law can be explained by the
change in the production rate of turbulent kinetic energy with µ in the buffer layer.

(iii) A half-power representation of the velocity profile can be given on the basis
of the characteristic velocity scale u∗

s and the length scale hs in the region where the
shear stress gradient has primary importance. The constant K1 in equation (15) is
influenced not only by β ′ = αhs/u

∗2
s but also by Re∗′.

(iv) It is appropriate that the defect law in the turbulent core region is given by
equation (16). For P-type flow, the characteristic velocity scale u∗

e and the length scale
hs are recommended. On the other hand, the characteristic velocity scale u∗

c and the
length scale h are recommended for C-type flow.
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(v) Similarity laws for the turbulence intensity variation in the wall region
normalized by wall variables can be expressed as functions of Re∗′ and shear stress
gradient parameter µ, equations (19), (21) and (22). Those in the turbulent core
region can be expressed by the characteristic velocity scale u∗

e and the length scale
hs for P-type flow, but by the characteristic velocity scale u∗

c and the length scale h

for C-type flow, equations (23) and (24), respectively. Similar laws also hold for the
skewness factor. The experimental results confirm these similarity laws. In the wall
region, µ is a governing parameter whereas Re∗′ has little effect on the similarity law.

(vi) Because the relation µ = −Re∗′ = −Re∗ holds for plane Poiseuille flow and Re∗′

or Re∗ has little effect on the similarity laws for C-P flows, the low Reynolds number
effect on mean velocity and turbulence quantities can be attributed to µ effect for
plane Poiseuille flow.

(vii) The turbulence activity away from the wall is extremely high for µ > 0, but
low for µ < 0. Thus, a strong sweep plays a dominant role in the Reynolds shear
stress when 0 <µ< 50, whereas strong ejection from the near-wall region prevails in
the case of negative µ with a small absolute value.

This work was supported through a Grant-in-Aid (No. 03452123) in 1991–1995 by
the Japan Ministry of Education, Science, Sports and Culture.
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